[Pluralsight] Feature Engineering in Machine Learning | Path [2019, ENG]

Страницы:  1
Ответить
 

vjigg

Стаж: 14 лет 2 месяца

Сообщений: 126

vjigg · 23-Окт-22 01:57 (2 года 2 месяца назад, ред. 09-Авг-23 11:22)

Feature Engineering | Path
Год выпуска: 2019
Производитель: Pluralsight
Сайт производителя://app.pluralsight.com/paths/skill/feature-engineering
Автор: Janani Ravi
Продолжительность: 17h
Тип раздаваемого материала: Видеоурок
Язык: Английский
Описание:
    Feature engineering is the process of using domain knowledge and insight into data to define features that enable machine learning algorithms to work successfully. Feature engineering is a fundamental part of the data preparation workflow for machine learning solutions.

What you will learn:
    Qualities of effective features and how to assess them
    Numeric techniques (quantization binning, binarization, transforms, scaling, normalization)
    Text techniques (bag-of-x, filtering, n-grams, phrase detection)
    Categorical data techniques (one-hot encoding, hashing, bin counting, etc)
    Dimensionality reduction (PCA)
    Nonlinear featurization (K-means clustering model stacking)
    Image processing techniques (feature extraction)

Prerequisites:
    Statistics
    Data Analytics Literacy
    Machine Learning Literacy

Содержание
Beginner
Learn how feature engineering fits into the machine learning workflow, and build your first features from numerical data.
    Preparing Data for Feature Engineering and Machine Learning (Janani Ravi, 2019)
    Building Features from Numeric Data (Janani Ravi, 2019)

Intermediate
Transform nominal data, such as names or categories, into features appropriate for machine learning, and apply techniques for simplifying large data sets.
    Building Features from Nominal Data (Janani Ravi, 2019)
    Reducing Complexity in Data (Janani Ravi, 2019)

Advanced
Extract features from text documents and images.
    Building Features from Text Data (Janani Ravi, 2019)
    Building Features from Image Data (Janani Ravi, 2019)
Файлы примеров: присутствуют
Субтитры: присутствуют
Формат видео: MP4
Видео: H.264/AVC, 1280x720, 16:9, 30fps, 201 kb/s
Аудио: AAC, 48.0 kHz, 96.0 kbit/s, 2 channels
Скриншоты
| | | | | | | | | | |
Download
Rutracker.org не распространяет и не хранит электронные версии произведений, а лишь предоставляет доступ к создаваемому пользователями каталогу ссылок на торрент-файлы, которые содержат только списки хеш-сумм
Как скачивать? (для скачивания .torrent файлов необходима регистрация)
[Профиль]  [ЛС] 
 
Ответить
Loading...
Error